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Summary. The MP2-R12 method was introduced by Kutzelnigg and Klopper to 
overcome the problem caused by truncation of the one electron basis set in 
correlation energy calculations at the Moller-Plesset second order level of 
approximation. Here, we have evaluated the integrals required by their simplest 
scheme using the Rys-quadrature procedure. Results are presented for Ne, H20, 
and HF using large spdf  gaussian basis sets. 
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1. Introduction 

In a series of papers [1-9], Kutzelnigg and Klopper (KK) have introduced a 
novel method to overcome the basis set deficiency in Moller-Plesset calculations 
of the correlation energy at the second order of perturbation theory. Readers are 
referred to this series of papers; here, we shall give only a brief summary of the 
ideas and aims of the method. Our purpose is to see whether this approach is a 
viable way of overcoming the enormous basis set problem of quantum chemistry. 

K K  commence with the Hylleraas variational principle for the MP2 pair 
energies. They argue that, in the usual finite one-electron basis approach, the 
main deficiency of the first order wavefunction ~Pl is its failure to obey the cusp 
condition as the interelectronic distance r 0 tends to zero. They therefore consider 
a first order wavefunction for the tj pair constructed from the reference determi- 
nant with the spin orbitals ~b i and ~bj replaced by u o. 

uu(1, 2) l~ci j  {1 - P(1)}{I - P(2)}rl2[/j] + ~, dTjb[ab] (1) 

where %. and dg. b are linear variational parameters, 

P(1) = ~ ]~bk(1))(~bk(1)l (2) 
k 

and 

[pq] = ~ {q~p(1)~q(2) --  q~q(1)qSp(2) }. (3) 
, /2 
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In our notation, i, j , . . .  run over occupied orbitals, a, b . . . .  run over virtual 
orbitals and p, q . . . .  run over all orbitals. They substitute (1) into the Hylleraas 
expression for the / j  pair energy 

l l u o . ( 1 , 2 ) ) + ( u u ( 1 , 2 ) l F ( 1 ) + F ( 2 ) - e ~ - e j l u o . ( 1 , 2 ) ) .  (4) f :  = 2([U][ r ~ 

An exact evaluation of (4) requires the evaluation of three electron integrals. K K  
evaluated (4) approximately using the assumptions that ~b e and qSj are the exact 
eigenfunctions of the Fock operator F and that the orbital set {q~ } is complete 
in one-electron space, i.e. 

1 = ~  [q~p(1))(q~p(1)] = Q(1). (5) 
P 

The result of inserting these assumptions into (4) is that the pair energy is a sum 
of two terms: the conventional MP2 pair energy e,j and a term correcting for the 
incompleteness in two-electron space, 

3 

([/J]lr12[1 -- Q(1)Q(2)]A k ][/j]) 
k = l  

where 

(6) 

1 
Al = (ci j I 2 - ~c,j) - -  (7a) 

r12 

A 2 = -- ¼c~ -~1 (r12" (V 1 - -  V2) ) (7b) 
r12 

A 3  ~ 1 2 - zc~/[K(1) + K(2), q2]- (7c) 

A 3 involves a commutator with K(1), the exchange operator in F(1). The 
evaluation of the A3 term in (6), involving three electron integrals, is much more 
difficult than the evaluation of the A1 and A2 terms. If  A3 is ignored then the pair 
energy f/j is given by 

fi: eo " + (2c0 " 2 c~U~ = - c ~ ) V ~ :  + ( 8 )  

where 

- -  1 Vij=½ ~ Z ([ij]]r12[[Pq])([Pq][ l l[iJ]) (9) 
p < q  r12 

and 

Ug = 3 + ¼  ~ ([ i j ][r ,2 l[pql) ([pq][ l (r~2.  (V,-Vz))l[ / j ]) .  (10) 
p < q  r12 

K K  made the important points that (9) and (10) involve completeness relations 
such that V u and Ug tend to zero as the one-electron basis set becomes complete. 

In the atomic case, the MP2 partial wave expansion has increments 
~( l  + 1/2) -4 for each succeeding completed /-shell in the basis set. The term 
A1 looks after this deficiency, and the terms A2 and A 3 look after the 
~( l  + 1/2)-6 deficiency. Thus, if the terms A1, A2 and A 3 are computed, the 
partial wave' expansion for the MP2-R12 method will have increments 

(l + 1/2)-8. K K  suggest the commutator in (7c) may make its contribution less 
significant than that from the A2 term, and that it may therefore be 
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reasonable to ignore A3. All calculations published to date by K K  have excluded 
the term A3, although it has been included in forthcoming calculations [7-9]. We 
ignore A3, as its full evaluation requires three electron integrals. 

By ignoring this term, the MP2-R12 method has increments ~ (l + 1/2)-6. It 
has been known for a long time [10-12] that the lack of the correlation cusp in 
the first order wavefunction is the reason for the slow convergence of the MP2 
(or any CI method) with respect to basis set, and this manifests itself in the 
(l + 1/2) -4 convergence. 

The final step in the K K  procedure is to optimisefj  with respect to c o. to yield 

f.j =eij  + co.Vi j (11) 

where 

V° (12) 
co - ( v , j  - u 0 )  

This is a stable procedure, because it turns out that V U and U 0. have opposite 
signs, at least for the cases considered so far. 

Our purpose in this work is not to present any new theory or approxima- 
tions, but to give some independent calculations using this procedure and discuss 
the likely contribution of this novel approach to the basis set problem in 
quantum chemistry. Before we can proceed with these calculations two new 
forms of gaussian integrals need to be evaluated: 

(pqlr12[rs) = J" J" ~/.tp (l)lpq (l)r,24Jr(2)**(2)d~, dr 2 (13) 

and 

(,pr[ L (r12 • ( V  1 - -  V2))[qs)= f l '~p(1)~r(2)  r12" ( V l -  V2) ~lq(1)~ls(2)d.Cl d.c2 
r12 ,) J r12 

_ (pq[ I__ (r12" (V1 - V2))[rs). (14) 
q2 

The latter is an alternative notation which we shall also use for this integral. K K  
derived such integrals for s gaussians, and then used gaussian lobes to represent 
higher angular momentum gaussians. 

In Sect. 2 we describe how we have evaluated (13) and (14) for s, p, d and 
f gaussians using Rys quadrature. In Sect. 3 we present our results for Ne, HF 
and H20  and give our assessment of this exciting idea in Sect. 4. 

2. Evaluation of the integrals 

The evaluation of integrals dominates the time required for SCF and MP2 
calculations, so efficient algorithms for integral evaluation are crucial to the 
success of both procedures. The new K K  theory requires integrals not in 
common use, and algorithms for their evaluation are presented following a 
summary of the background theory. 

The standard electron-electron integrals are 
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where Oe, OQ, 0R and Os are cartesian gaussians, 

tpe(r ) = X ~  Y ~ Z ~  p-- e-~e( ,-  e)2. (16) 

Xe, Ye and Ze  are components of the vector (r - P) and ne = ne~ + npy + ne~ is 
the total angular momentum quantum number. 

We have chosen to use the method of Rys, Dupuis and King [13] for the 
evaluation of the 1/rl2 integrals. The gaussian transform 

/: 1 _  2 e_(U~2)2 du (17) 
r12 N ~  

is substituted into (15), yielding 

(Pql lr~2 Irs) = I I~.(u)[y(u)Iz(u) du (18) 

integrals. 
The r12 integral separates naturally into a sum of three modified 1/r~2 

integrals, each containing X22, Y~2 or Z~2 
X22 . , y22 Z22 

(pqlq2l rs) = (pq 712 1 rs) + vpq[ ~ I rs) + (Pql--r,2 [rs) (21) 

where 

Ix,.12(u) = .J ' .J '(XI- ex)  "Px e x p [ -  ~ p ( X "  1 - -  px)2](X1- ax)nex exp[--eQ(XI Q~)21 

x (X2 - Rx) ~ exp[ -eR(X2 -- Rx)2](X2 -- Sx) "s~ 

x exp[ - e s ( X 2  - S~) 2] e x p [ -  (uX~2) 2] x X~12 dX~ dX> (23) 

The modified subsidiary function Ix~,2 can be evaluated easily. Writing 

X22 = (S" 1 - -  P~ + R~ -- X2 + Px -- Rx) 2 

= X21~ + X~R + XzR + 2(X~pXpR -- XlpX2R - X2RXeR) (24) 

,2(u)Ir(u)Iz(u) + Ix(u)Ir,~2(U)Iz(u) + Ix(u)Ir(u)Izq2(u) du 

(22) 

where 

ff Ix(u) = (XI - Px) x exp[ -c~p(X1 -- px)2](X1 - Qx)nex exp[ -cq?(X1 - Qx) 2] 

x (X2 - Rx) n"x exp[ -eR(X2 - Rx) 2](X2 - eOx)nSx exp[ -C~s(X z - Sx)2] 

x exp[-(uXl2)  2] dXl dX2 

=- Ix(ne,  n e,  nR, ns, u). (19) 

The subsidiary functions Ix(u), Iy(u) and Iz(u) are evaluated for particular 
values of u using recursion relations. The integral is then evaluated exactly by an 
N-point quadrature formula based on roots and weights from Rys polynomials 

(pq Irs) = Y', lx(u~)Iv(u~)Iz(u~)w~. (20) 

The new integrals (13) and (14) are essentially linear combinations of  the lira2 
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and substituting this into (23) yields 

Ixr,z(np, n O, nR, ns, u) = Ix(n e + 2, nQ, nR, ns, u) + Ix(n p, nQ, n e + 2, ns, u) 

+ X2eR x Ix(np, nQ, nR, ns, u) + 2[XpR x Ix(np + 1, no, nR, ns, u) 

-- XpR x I~:(np, no, nR + 1, ns, u) -- Ix(n P + 1, nQ, nR + 1, ns, u)]. (25) 

Thus in order to calculate the r12 integrals one first forms modified subsidiary 
functions I x ~ ,  Ir~12 and Iz~2 from the conventional subsidiary functions Ix, I r  
and I z using (25). The r~z primitive integrals are then evaluated using (22). 

It is also possible to form the r~2 integrals in the contracted atomic orbital 
basis directly without first forming primitive integrals, and the recursion tech- 
niques suggested by Obara and Saika [34], and Head-Gordon and Pople [35] are 
ideally suited to this. Although it is less efficient, we have retained the Rys 
scheme in this work as it is more easily adapted to produce the lira2, r12 and 
l/r12(r12 - (V 1 - -  ~72) ) integrals simultaneously. 

The integral (pr[O]qs), where 

0 = 1 (rl2" ( V , -  V2) ) (26) 
rl2 

separates into three components just like the r12 integral. Writing the operator 0 
as the sum of its X, Y and Z components 

0 = L  [XI2(~/~X1- ~/~X2) + Y~z(O/~YI-  O/~Yz) +Z~2(O/OZ~- O/~Z2)] (27) 
?'12 

yields 

@rlOlqs) = ['IxvlyI z + I x l r v I  z + Ixlr-Izv du (28) 
d 

where 

Ixv(np, nQ, n R, ns, u) = - 2  x Ix (n , ,  n e, nR, ns, u) 

- ~ Ix(np, n e + 1, nR, ns, u) + ~ x  ~:(np, n e, nR, ns + 1, u) 

+ Ix(n , ,  % + 1, nR, u) + + l, u) 

(29) 

and Qx is the X component of nuclear centre Q. The derivative subsidiary 
functions such as (O/OQx)Ix(np, nQ + 1, n R, ns, u) are required in ab initio alge- 
braic derivative theory [ 14], and therefore are readily available in most ab initio 
integral packages. 

Each r~2 and lira2 integral is permutationally equivalent to seven other such 
integrals. However, the integral (pr[O]qs) is only equivalent to (rp]Olsq), 
although it is related to (qs[O)~r) by a 1/r12 integral. Each time an F~2 subsidiary 
function or integral (pqlr121rs) is formed, two non-equivalent O subsidiary 
functions or integrals must be formed. The advantage of producing both the 
1/rl2, r12 and 0 integrals from modified l/rl2 subsidiary functions is that all three 
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sets of integrals may be produced simultaneously from an enlarged set of 
subsidiary functions, with a minimum of redundant calculations and duplicated 
computer code. The number of unique integrals required for the KK method is 
N(N + 1)(N 2 + N + 2)/2, where N is the number of basis functions. 

A standard four index transformation algorithm [36] is used to transform 
both the 1/r~2 and r12 integral from the atomic orbital basis to the molecular 
orbital basis, 

(pqlOlrs) --, (ulOIKL) (30) 

where 0 is 1/r~2 or rl> However, some minor modifications were required for 
transformation of the 1/r~2(r~2" ( V l -  Vz)) integrals because they have lower 
permutational symmetry. In particular, the standard algorithm produces batches 
of integrals (IJIOIKL) for fixed J and I >~J, K~> J, and L ~> J, where 0 is 
any of the operators 1/r12, r12 or 1/r12(r12.(Vl-V2)). However, since 
(Hll/r12(r~2" (V 1 - -  V2))IKL) e (JI[1/r,2" (r,2(Vl - V2))IKL), the batch of inte- 
grals (JIll/r~2(r~2. (V~- V2))IKL) must also be produced. 

Not all N 4 molecular orbital integrals are required. If there are n occupied 
molecular orbitals and N molecular orbitals in total, then the required block of 
molecular orbital integrals is 

(1 o N ,  1--.n[OI1 o N ,  1 ---~n) 

where 0 refers to any of the operators 1/r12, r12 or 1/r12(r12" (Vl - V2)). 
Successive batches of molecular orbital integrals are formed, one batch for 

each operator. Their contribution to the MP2 pair energy and the KK correction 
term is evaluated and then the integrals are discarded prior to the formation of 
three more batches. The storage requirement of the four index transformation is 
N 3. The time taken for the four index transformation is small compared to the 
time required for evaluation of the atomic orbital integrals. 

3. Results 

The primitive sp sets and contractions used throughout this work are collected in 
Table 1. The polarisation functions (Table 2) are taken from the work of Pople 
[21], and larger sets obtained by replacing an exponent c~ with (1/2~,2e), 
(1/4e, c~, 4c 0 and so on. 

3.1. Basis set limit MP2-R12 calculations for Ne 

In our Ne calculations, we have attempted both to approach the sp, spd and spdf 
limits for MP2 and MP2-R12 methods as closely as possible, and to devise 
smaller basis sets which yield acceptable results. We have established four criteria 
for examining this convergence: 

(i) the decreasing SCF energy, 
(ii) the decreasing MP2 correlation energy, 
(iii) the decreasing value of the completeness relation measured by [~ V 0. [, Eq. 
(9), 
(iv) the decreasing value of the completeness relation measured by I~ U0 I, Eq. 
(lO). 
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Table 1. Primitive and contracted sp sets used in this work 

Primitive Contraction Reference 
set 

9s5p 15 
5s5p [51111]s5p 
4s2p [6111]s[41lp 16 

10s6p 15 
6s6p [41 l l l l l ] s 6 p  
5s4p [62111]s[3111]p 17 

13s8p 
8s8p [5211111]s8p 
8p6p [52111 ll]s[311111]p 

18 

14slOp 19 
7s6p (1 -5 )~ (6 -  lO)a~(6-10)2~( 11)(12)(13)(14)s 20 

(6 lO)2p(11)(12)(13)(14)(15)p 

Table 2. Polarisation 
exponents (taken from [21]) 

Type H 
p 0.75 
d 1.0 

Type O F 
d 1.30 1.65 
f 1.40 1.80 

Ne 
2.31 
2.70 

Table 3 shows how the criteria are affected by the quality of the sp basis set 
used. If we regard the 14sl0p set as the sp limit, then only the 8s6p, 8s8p, 13s8p 
and 7s6p sets are adequate as far as the SCF energy is concerned. As for the 
MP2 energy, only the 8s8p and 13s8p sets are adequate. However, all basis sets 
except 4s2p, 5s4p and 7s6p give MP2-R12 values within 0.001 Eh of the 14sl0p 
value. 

Table 4 shows the effect of adding d and f polarisation functions. It appears 
that the spd limit may have been reached with 5d functions. Addition of d 
functions with exponent c~ ,,~100.0 and e ~0.10 made no difference to the 
MP2-R12 energy. We note that [~ U/j[ < I~ V~Jl when three d functions are 
present, and understand this by saying that the increments in 1~ V0. [ go as 

Table 3. Ne calculations using sp basis sets. All energies in hartrees 

Basis set --EscF + 128 a --Egp 2 --EMp2_R12 - - ~  V,7 ~, U(/ 

4s2p 0.492019 0.108132 0.759113 1.80 4.19 
5s5p 0.527247 0.183634 0.651907 1.25 3.24 
9s5p 0.528222 0.184500 0.652220 1.25 3.23 

5s4p 0.535132 0.166148 0.646629 1.30 3.51 
6s6p 0.538079 0.188803 0.652351 1.24 3.22 
10s6p 0.540943 0.189327 0.652566 1.24 3.21 

8s6p 0.546473 0.183692 0.651743 1.25 3.24 
8sSp 0.546473 0.191195 0.652658 1.23 3.20 
13s8p 0.546573 0.191410 0.652765 1,23 3.20 

7s6p 0.546902 0.176957 0.649679 1.26 3.31 
14sl0p 0.546902 0.191808 0.652936 1.23 3.20 

a The Hartree-Fock value is --128.54710 (from [22]) 



368 M.J .  Bearpark et al. 

Table 4. Ne calculations at sp, spd and spdf limits, All energies in hartrees 

Basis set --EscF + 128 --EMp2 --EMP2-R12 - -Z  VU Z U~j 

14sl0p 0.546902 0.191808 0.652936 
14slOpld 0.546905 0.273167 0.392179 
14slOp2d 0.546911 0.304489 0.380978 
14slOp3d 0.546914 0.311960 0.402028 
14slOp4d 0.546913 0.314546 0.406168 
14slOp5d 0.546928 0.317628 0.407020 
14slOp5dlf 0.546929 0.342148 0.388865 
14slOp5d2f 0.546930 0.349694 0.387615 
14slOp5d3f 0.546944 0.352298 0.388283 

16slOp7d3J a 0.54696 0.35075 0.38855 

valence only 
14sl0p 0.146228 0.591502 
14slOp5d 0.256964 0.339708 
14slOp5d3f 0.290520 0.320592 

1.23 3.20 
0.31 ~.85 
0.17 0.33 
0.14 0.11 
0.13 0.09 
0.13 0.09 
0.06 0.03 
0.05 0.02 
0.04 0.02 

1.12 2.24 
0.11 0.07 
0.04 0.01 

a Kutzelnigg and Klopper, taken from [9] 

( l +  1/2) -4, whilst the increments in ]Z Uu] go as (l + 1/2) 6, as described by 
KK. The spdf limit appears to have been reached with the 14s 10p 5d3f basis. We 
note the importance of polarisation functions with small exponents. The addition 
of a d function with ~ = 0.2 lowered the MP2-R12 energy by 0.004 Eh with 
respect to the calculation carried out with just the tightest 4 functions of the 5d 
set described above. 

Table 5 shows results obtained by starting with two smaller basis sets. We 
find that the 8s8p results are very close to those obtained with 14sl0p. Indeed, 
the 8sSp3dlfresult appears to be nearly as good as the 14slOp3dlf, as measured 
by ~ Vg, ~ U o. and the MP2-R12 values. The 6s6p set appears to give results 
which are consistently an order of  magnitude less reliable. 

Using our values for sp, spd and spdf limits, we can estimate the exact MP2 
and MP2-R12 values. From the sequence of MP2 values -0 .192  E h, -0 .318  Eh, 
--0.352 Eh, and using the (l + 1/2)-4 increments we estimate the spdfg limit to be 

Table 5. Ne calculations using contracted basis sets. All energies in hartrees 

Basis set - E s c  F + 128 --EMp 2 --EMP2_R12 --~ V o" ~ Uij 

6s6p 0.538079 0.188803 0.652351 1.24 3.22 
6s6pld 0.538091 0.270357 0.390972 0.32 0.86 
6s6p2d 0.538592 0.301604 0.379486 0.17 0.34 
6s6p3d 0.539049 0.309341 0.401033 0.14 0.12 
6s6p3dlf 0.539055 0.334260 0.382559 0.07 0.07 
8s8p3dlf 0.546524 0.335985 0.383394 0.07 0.06 
14slOp3dlf 0.546914 0.336437 0.383594 0.07 0.06 

8s8p 0.546473 0.191195 0.652658 1.23 3.20 
8s8p5d 0.546563 0.317134 0.406788 0.13 0.09 
8s8p5d3f 0.546566 0.351978 0.388132 0.05 0.02 
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- 0 . 3 6 4  Eh, and using the 1/3(l + 1) -3 as the total error after the/-shell ,  the full 
MP2 limit is estimated to be -0 .378  Eh. However, using the MP2-R12 values of  
-0 .653  Eh, --0.407 Eh and -0 .388  Eh with the (l + 1/2) -6 increments and the 
subsequent 1/5(l + 1) -5 error, we estimate the MP2-R12 spdfg limit to be 
- 0 . 3 8 4  Eh, and the full limit as - 0 . 3 8 2  Eh. There is sufficient evidence in the 
literature to suggest that this is a little above the exact MP2 limit value. 
Jankowski and Malinowski [23] estimate --0.387Eh, whilst Petersson et al. 
[24, 25], using an analytical limiting procedure based on/ -convergence  suggest 
- 0 . 385  Eh. Wenzel et al. [32] suggest -0 .385  Eh, and Lindgren and Salomonson 
[33] suggest --0.388Eh. K K  themselves [9] obtain - 0 . 3 8 9 E  h with their 
16s lOp7d3f basis, and -0 .388  Eh with a 13s 1 lp lOdlOf9g5h STO basis set [8]. 
The situation will be cleared up when the MP2-R12 spdfg results are available. 
Our calculations suggest that the g contribution of - 0 . 0 0 4  E h is too large to 
estimate as we have done, and so we must await such calculations. 

We may also discuss the valence shell MP2 values, which are - -0 .146E h, 
--0.257 Eh and --0.290 Eh, giving an estimated spdfg MP2 value of  -0 .303  E h. 
The MP2-R12 values are - 0 . 592  Eh, --0.340 Eh, --0.321 Eh, giving an estimated 
spdfg MP2-R12 value of  - 0 . 317  Eh and a valence M P 2 - R 1 2  limit of  -0 .315  E h. 
Again, this value is in accord with the most  recent best estimates. Taylor [26] 
argues that his results, using a [6s6p5d4f3g2hli] contracted basis for MP2 
( - 0 . 3 1 1 8  Eh) and CCSD + T ( - 0 . 3 1 6 4  Eh) suggest that the higher order contri- 
bution to the Ne valence shell correlation energy is 0.004-0.005 Eh. Sasaki and 
Yoshimine [27] estimate that the Ne valence shell correlation energy is 
-0 .321  Eh, and thus Taylor [28] believes that the MP2 valence shell energy 
should be 0.316-0.317 E h. 

3.2. MP2-R12 calculations for H F  and H 2 0  

Our Ne calculations suggested that the 8s8p set was a good starting point for 
reliable MP2-R12 calculations. In Tables 6 and 7, calculations on H F  and H20 

Table 6. HF calculations. All energies in hartrees 
R e = 1.733 a o 

Basis set --EscF-~-100 a --EMp 2 --EMP2_R12 --~, gij • U[j 

[4s2p/2s] 0.021971 0.134235 0.649121 1.54 4.14 
[4s2pld/2slp] 0,047537 0.212960 0.415723 0.71 2,42 

[6s6p/3s] 0,036499 0.197603 0.609361 1.14 3.05 
[6s6pld/3slp] 0.060569 0.279259 0.384322 0.27 0.66 
[6s6p2d/3s2p] 0.063473 0.306216 0.381276 0.15 0.25 
[6s6p3d/3s3p] 0.063855 0.312553 0.394175 0.13 0.11 
[6s6p3dlf/3s3p ld] 0.065297 0.336270 0.379843 0.07 0.06 

[8s8p/7s] 0.043014 0.200838 0.607925 1.13 3.03 
[8s8p4d/7s4p] 0.068828 0.318173 0.398777 0.12 0.09 
[8s8p4d2f/7s4p2d] 0.070287 0.347984 0.384300 0.05 0.02 

15slOp5d2f/1Os3pld b 0.34603 0.38459 

a Hartree-Fock value is - 100.07082 (from [29]) 
b Kutzelnigg and Klopper, taken from [9] ( R  e = 1.7328ao) 
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Table 7. H 2 0  calculations. All energies in hartrees 
R e = 1.8088ao, g = 104.5 ° 

M. J. Bearpark et al. 

Basis set - E s c  F + 76 a - -EMm --EMP2_RI 2 --~ Vii ~_~ Uij 

[4s2p/2s] 0.009286 0.137846 0.563188 1.34 4.01 
[4s2pld/2slp] 0.046405 0.216932 0.364437 0.54 2.21 

[6s6p/3~ 0.020219 0.190762 0.549913 1.03 2.80 
[6s6pld/3slp] 0.056439 0.272276 0.359328 0.22 0.52 
[6s6p2d/3s2p] 0.060518 0.293961 0.360358 0.13 0.19 
[6s6p3d/3s3p] 0.061264 0.298899 0.367640 0.11 0.11 
[6s6p3dlf/3s3pld] 0.062970 0.321045 0.357141 0.06 0.06 

[8s8p[7~ 0.025909 0.94459 0.547680 1.01 2.77 
[8sSp4d[7s4p] 0.065199 0.305046 0.372113 0.10 0.08 
[8s8p4dlf/7s4pld] 0.066688 0.325728 0.362508 0.05 0.03 
[8s8p4d2f/7s4pld] 0.066763 0.330455 0.361889 0.04 0.02 

[9s7p4d2f/7s3pld] b 0.06579 0.33042 0.36049 

a Estimated Har t r ee -Fock  limit -76 .0675 (from [30]), at R e = 1.811 lao, c~ = 104.45 ° (experimental 
values) 
b Kutzelnigg and Klopper, taken from [9] 

are presented, using this and other basis sets described above. As with Ne, we 
find that sp and spd limit calculations give MP2-R12 energies below the esti- 
mated MP2 limits of -0.380 Eh for HF and -0.360 Eh for H20 [9]. It appears 
as though f functions are still required for reliable molecular calculations with 
this method. 

As a test of the quality of the MP2-R12 wavefunction for HF, we have 
computed harmonic frequencies using three basis sets from Table 6. These were 
derived from fits carried out on a 0.001 au grid. Using this procedure, the MP2 
frequencies were within 1 cm -1 of those obtained using analytic MP2 second 
derivatives in each case. The HF molecule is well described by MP2, and thus we 
expected to approach the experimental result closely. 

Table 8 shows that for HF there is no significant improvement in accuracy 
on going from MP2 to MP2-RI2. Further investigations are underway to see 
whether this applies to other molecules. 

Table 8. Harmonic  frequencies and bond lengths for H F  

Basis set MP2 MP2-R12 

a~e/Cm -1 Re/a o O)e/cm -1 Re/a 0 

[4s2pld/2slp] 4211 1.734(9) 4026 1.743(4) 
[6s6p2d/3s2p] 4155 1.732(3) 4157 1.731(6) 
[8sSp4d2f/Ts4p2d[ 4146 1.733(0) 4141 1.734(2) 
Experimental a 4139 1.733 

a Taken from [31] 
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4. Conclusion 

In  this paper ,  we have invest igated the MP2-R12  me thod  recent ly suggested by 
Kutze ln igg  and  Kloppe r .  Based on  our  ca lcula t ions  on Ne,  N F  and H 2 0 ,  we find 
tha t  their  s implest  scheme is capab le  o f  p rov id ing  near  basis set l imit  M P 2  
energies i f  ca lcula t ions  are  pe r fo rmed  with  basis sets o f  qual i ty  8s8p4d2ffor first 
row a toms  ( ~  70 basis  funct ions  per  a tom).  F o u r  t imes as m a n y  integrals  are 
required,  c o m p a r e d  with the conven t iona l  M P 2  method .  We believe tha t  this is 
very significant,  because  for  the first t ime basis  set l imit  studies are  possible  for  
cor re la ted  methods .  This is because  the KK m e t h o d  is able  to represent  the 
wavefunct ion  correc t ly  near  the e lec t ron-e lec t ron  cusp. 

W e  have s ta r ted  to  s tudy molecu la r  proper t ies  with this method .  Our  init ial  
studies on the ha rmon ic  f requency o f  H F  appea r  to suggest  tha t  it  is no t  so 
dependen t  u p o n  the cusp behav iou r  as the cor re la t ion  energy itself. 
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